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Let A be a nonempty closed bounded subset of a uniformly convex Banach space
IE. Let 'is'(IE) denote the space of all nonempty closed convex and bounded subsets
of IE, endowed with the Hausdorff metric. We prove that the set of all X E 'is'(IE) such
that the maximization problem max(A, X) is well posed is a Go dense subset of
'6'(IE). A similar result is proved for the minimization problem min (A, X), with X in
an appropriate subspace of '6'(IE). '£J 1992 Academic Press, Inc.

1. INTRODUCTION AND PRELIMINARIES

Let IE be a real Banach space. We denote by 28( IE) the space of all non­
empty closed bounded subsets of IE. For X, Y E ,?g(IE), we set

Axy=inf{llx- YlllxEX, yE Y},

JlXy=sup{llx-ylllxEX, yE Y}.
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Given X, Y E ~(IE), we consider the minimization (resp. maximization)
problem, denoted min(X, Y) (resp. max (X, Y)), which consists in finding
points X oE X and )'0 E Y such that Ilxo - Yoll = AXY (resp. Ilxo- Yo!1 = J.1xr j.
Any such pair (xo, Yo) is called a solution of the corresponding
problem. Moreover, any sequence {(x,,,)'n)}, X" E X, )'" E Y, such that
lim" ~ oc Ilx" - Ynll = An (resp. limn ~ oc Ilx1l - Ynil = f.J.XY) is called a mini­
rnizing (resp. maximizing) sequence. A minimization (resp. maximization)
problem is said to be well posed if it has a unique solution (xo, Yo), and
every minimizing (resp. maximizing) sequence converges to (xo, Yo).

Let I'v! be a metric space with distance d. For any U E M and r> 0 we
set BM(u,r)={xEMld(x,u)<r} and BMlu,r)={xEMld(x,u)~r}.Ii
Xc M, by X and diam X (1'"# ¢J) we mean the closure of X and the
diameter of X, respectively. As usual, if Xc IE, co X stands for the dosed
convex hull of X. We put, for short, B=B[(O, 1) and B=B[(O, 1).

We set

'6'(IE) = {Xc lEI X is nonempty, convex, closed, bounded}.

In the sequel, we suppose the space '6'(IE) to be endowed with the Hausdorff
distance h. As is well known, under such metric, '6'(IE) is complete.

In this note we consider problems of minimization, min(A, X), and
of maximization, max(A, X), where A E 86'(IE), X E '6'(IE), and IE is uni­
formly convex. More precisely, for a fixed A E ~([E), set 'tfA(IE) =
{X Ect'(IE) IA,4X > O}. Then, it is proved (Theorem 3.3) that the set of all
X E '6'A(IE), such that the minimization problem min(A, X) is well posed, is
a dense Gb-subset of '6'A(IE). Furthermore, it is shown (Theorem 4.3) that
the set of all XEct'(IE), such that the maximization problem max(A, X) is
well posed, is a dense Grsubset of ct'( IE).

The problems considered in this note are in the spirit of Steckin [22].
Some further developments of Steckin's ideas, also in other directions, can
be found in [4-6,12,14-21] and in the monograph [lOJ, by Dontchev
and Zolezzi. Recently, a generic theorem on points of single valuedness of
the proximity map for convex sets has been established by Beer and Pai
[3], in a setting different from ours. Some other generic results in spaces
of convex sets can be found in [2, 8].

2. AUXILIARY RESULTS

Let X E 86'(IE) and z E IE be arbitrary. We set

d(z, X) = inf{ liz - xiii x EX},

e(z, X)=sup{llz-xlllxEX}.
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For X, Y E .16(IE) and a> 0, we set

Lx,y(a)= {xEXld(x, Y)~Axy+a},

Mx,y(a)= {xEXle(x, Y)~J-lXy-a}.

The sets Lxy(a), Mxy(a) are nonempty, closed, and satisfy Lxy(a)c
Lxy(a'), M Xy(a) c M Xy(a'), if 0 < a < a'.

PROPOSITION 2.1. Let X, Y E .16(IE) and Z E IE be arbitrary. Then we have

Axy~d(z, X) + d(z, Y),

Jl.Xy ~ e(z, Y) - d(z, X).

Proof Both inequalities follow easily from the definitions.

(2.1 )

(2.2)

PROPOSITION 2.2. Let X, Y E .16(IE) be arbitrary. Then the problem
min(X, Y) (resp. max(X, Y) is well posed if and only if

inf diam Lxy(a) = 0
,,>0

(resp. inf diam M Xy(a) = 0
,,>0

and

and

inf diamLyx(a)=O
,,>0

inf diam M yx(a) = 0).
,,>0

Proof This is an easy adaptation of an argument due to Furi and
Vignoli [13].

The following proposition is a variant of a result due to Zabreiko and
Krasnosel'skii [23J and Danes [7J (see also [8J).

PROPOSITION 2.3. Let X E !6'(IE), 8> 0, and I' > 0 be arbitrary. Then there
exists 0 < ro < I' such that for every u E IE, with d(u, X) ~ 1', and for every
O<r~ro, we have

diam Cx,u(r) < 8,

where

Cx,u(r) = [co(Xu {u} )J\[X+ (d(u, X) - r)B]. (2.3)

PROPOSITION 2.4. Let IE be a uniformly convex Banach space. Let 8> 0
and let 1'0,1'>0, with 1'<1'0, be arbitrary. Then there exists O<ao<r such
that for every x, y E IE, with II y - xII = 1', and for every I' < 1" ~ 1'0 and
o< a ~ a0, we have

diam D(x, Y; 1", a) < 8,
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D(x, y; 1", (1) = BIE(y, 1" -II y - xii + 11 )\B IE{X, r').
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Proof Let C > °and 0<1' < 1'0 be given. Let x, y E IE satisfy Ii J - xii = r.
Let r < 1" ~ 1'0 be arbitrary and let y' = (x + )' )/2. We have D(x, y; 1", (J) C

D(x, y'; r', (1), 11>0. Moreover, by [9, Lemma 2.1], if O<I1~2 ily'-xli,
we have

diam D(x, y'; 1", (1) ~ 211 + 2(1" -II)" - xli) b* ( I ~ )

2 11.v-xll

(
11\

~211+(2ro-r)b* -l,
vJ

where, for 1/>0, o*(1J)=sup{cIO<c~2and o(e)~1J} and 0 denotes the
modulus of convexity of IE. Since the last term in the above inequality
vanishes as a --> 0, to complete the proof it suffices to choose a0> 0 such
that 2110+ (21'0 - 1') o*(aolr) < c.

3. MINIMIZATION PROBLEMS

In this section IE denotes a uniformly convex Banach space. Let A be a
fixed nonempty closed bounded subset of IE. We put, for short, Ax =..1.AX ,
X E .@( IE). Define

Under the Hausdorff distance, ~A(IE) is a complete metric space.
For each kEN set ck = 11k, and define

2 k= {XE~A(IE)I inf diamLxA(a)<ck and inf diam LAX(a) <ed,
a>O a>O

To prove the main result of this section, Theorem 3.3, we state two
lemmas, whose proofs will be given later.

THEOREM 3.3. Let IE be a uniformly convex Banach space. Let A E '@(IE).
Then the set

"/r = {X E ~A(IE) Imin(A, X) is well posed}

is a dense Grsubset Of~A(IE).

640.70:2-2
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Proof By Lemmas 3.1 and 3.2, the set

is a dense Go-subset of "t'A(IE). Moreover, by Proposition 2.2, we have
j" =~. Hence j/' is a dense Go-subset of ~A(IE), completing the proof.

- 1- . 1Remark 3.4. If A = Band Xo= 2B, then for each X EB'if(ll:)(Xo, 2) the
minimization problem min(A, X) is not well posed. This shows that
Theorem 3.3 does not hold, in general, if the space "t'A(IE) is replaced by
~( IE).

Set ~~(IE)= {XE"t'(IE)IAx>O} and observe that "t'~(IE) is a Baire space,
being completely metrizable by Alexandroffs theorem. Then Theorem 3.3
remains valid with "t'~(IE), in the place of ~A(IE).

Remark 3.5. For AE.'J6(IE), set ~A(IE)= {XE1fi(IE)!Xc IE\A}. The space
E0A(IE) endowed with the Hausdorff metric is complete and, clearly,
1fiA(IE) c ~A(IE). Also in the space Q1A(IE) Theorem 3.3 is, in general, false.
To see that, set A=Q\C, where Q={(x,Y)EI);nO~x~3n, -1~y~1}

and C={(X,Y)E[R210~x~3n, -lsinxl~y~lsinxl}, and let Xo=
{(X,0)E[R2In/2~x~5n/2}. Clearly, XoE..@A([R2). Moreover, if r>O is
sufficiently small, for every X EB94(1R2)(XO' r) the minimization problem
min(A, X) is not well posed.

Remark 3.6. Theorem 3.3 remains valid if A is a nonempty closed
subset of IE, A i= IE. In this case, Theorem 3.3 is a multivalued version of a
theorem due to SteCkin [22]. If IE is an arbitrary Banach space, then
Theorem 3.3 is, in general, not true. Take, for example, IE = [R2 with the
norm max{lx!, Iyl}, (x, Y)E[R2, and set A=B, Xo= {(0,2)}. Then there
exists r > 0 such that, for every X E B'C

4
([j(XO, r), the minimization problem

min(A, X) is not well posed.

Proof of Lemma 3.1. Let XE"t'A(lEj and let r>O. We want to show
that there exists Y E ft'k such that h( Y, X) ~ r. Without loss of generality we
suppose Ax> 0 and 0 < r < Ax'

By Proposition 2.4, there exists 0 < 0"0 < r such that for every x, Y E IE
with Ilx - yll = r, and for every 0 < 0" ~ 0"0' we have

where

diam D(x, y; Ax, 0") < Bk , (3.1 )
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(3.2 )

By Proposition 2.3, there exists 0 < '0 < r/2 such that for every U E it with
d(u, X)? 1"/2, and for every 0 <, ~ '0' we have

(3.3 )

where Cl(..J') is given by (2.3). Set

(3.4 )

Now, pick .X' E X and ii E A such that

(3.5 )

Since II-X' - ii II ? ).x> r, in the interval with end points i and a there is a
point U, say, such that

(3,6)

Define Y = co(Xu {u}). Since Y c X + rB and A n (X + )"XB) = 1,6, we have
Ay?Ax-r>O, and so YE'i&'A(it). Clearly h(Y, X)~r. Thus, to complete
the proof, it suffices to show that Y E !Ek'

To this end, we start by proving the following inequalities:

I"
"2<d(u, X)~r.

Indeed, by virtue of (3.5) and (3.6), we have

~c

lIu-iill = Ilx-iill-II·X'-ull ~A.x+-;:;-·-r,
L.

(3.7)

(3.8 )

(3.9)

from which (3.7) follows, since u E Y and aE A. Furthermore, by virtue of
(2.1) and (3.9), we have
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and thus d( u, X) > r/2, for i ~ to < r/2. Since the right inequality in (3.8) is
trivially satisfied, the proof of (3.8) is complete.

Claim 1. We have

(3.10 )

Indeed, suppose (3.10) not true, and let yEL yA (i/2)\Cx,u(i) be
arbitrary. We have

A.x~d(y, A)+d(y, X) (by (2.1))

(as y ¢ Cx,u(i))

(by (3.7) and (3.8))

(3.11)

From the contradiction, (3.10) follows and Claim 1 is proved.

Claim 2. We have

LAY (~) c D(x, u; A. x , u)

Indeed, let aELAy (i/4) be arbitrary. Evidently, aEA and d(a, Y)~
Ay+f/4. Now, pickYE Ysuch that Ila- yll ~Ay+i/2. This and (3.7) imply

and thus

Ila- yll ~Ax-r+f,

d(y, A)~Ax-r+f.

(3.12)

(3.13 )

By virtue of (2.1), (3.13), and (3.8), we have

d(y, X) ~ Ax-d(y, A) ~ Ax - (A x - r+f) ~ d(u, X)- f,

which shows that yECx,u(f). From (3.8) and (3.4), d(u,X»r/2 and
f ~ to. Thus (3.3) gives diam Cx,u(i) < 0'/2, and so

a
Ily-ull <­2'

(3.14)
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Now we have

Ila-ull < Ila- yll + Ily-ull

- (j«Ax -r+r)+2" (by (3.12), (3.14»

<Ax-IIS:-ull +8' (by (3.6), (3.4»,
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which shows that a E B[(u, Ax -II,X: - ull + a). Clearly :Ia - xii ~ Ax, that is,
a¢B[(x, Ax). Hence aED(.X:,u;Ax , 0'). As aELAy(iI4) is arbitrary, (3.11)
is proved, completing the proof of Claim 2.

As diam Cx,u(i) < 0'12 and, by (3.2), 0'< Ck' from Claim 1 we have

(3.15 )

Furthermore, from (3.6) and (3.2), II,X:-ull =r and 8<lJo' Thus (3.1) gives
diam D(x, u; ;'x, 8) < Ck' Hence, by Claim 2, we have

(3.16 )

From (3.15) and (3.16), it follows that YE.'l'b which completes the proof
of Lemma 3.1.

Proof of Lemma 3.2. Indeed, let X E.'l'k be arbitrary. Let IJ > 0 be such
that

where 8=min{ inf diam LxA(lJ), inf diam L AX(I1)}.
0'>0 0">0

(3.17 )

Furthermore, let 11 1 > 0 be such that

(3.18 )

Fix 112' 0 < (J 2 < 11 1 , and set

-_ . f111 - 112 !!..}
i)-mInt 2 '2' (3.19 )
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arbitrary. Let y E L YA( a2) be arbitrary. As h( Y, X) < 8, there exists an x E X
such that Ily-xll <8. We have

d(x, A) < d(y, A) +8

(as YEL yA (a2))

(ash(Y,X)<o)

(by (3.19)),

and so xELxA(a l ). Hence y=x+(y-x)EL xA(ad+8B, from which,
since y is arbitrary in L yA (a2), we have LYA(a2)cLxA(rrd+8B. From
this, by virtue of (3.18), (3.19), and (3.17), we have

diam L YA(rr2) ~ diam LXA(rr I) + 28 < e+ 2'7 < t k. (3.20)

Now, let aELAy(a2) be arbitrary. We have d(a,X)~d(a, Y)+h(Y,X).
From this, it follows that

d(a, X) < d(a, Y) +b

~(.A.y+a2)+b

«Ax +b)+a2+ 8

(as h( Y, X) < 0)

(as a E L Ay (rr2))

(ash(Y,X)<b)

(by (3.19)),

which shows that a E LAX (rrd. As a E LAY (rr 2) is arbitrary, we have
L Ay(a2)cL AX(ad. From this, by virtue of (3.18) and (3.17), we have

diam L 4 y(rr2)~ diam LAX(rr I) < e+ '7 < ek' (3.21)

From (3.20) and (3.21) it follows that YE2k. As YEBlfA(IE/X,8) is
arbitrary, the proof of Lemma 3.2 is complete.

4. MAXIMIZAnON PROBLEMS

Also in this section IE denotes a uniformly convex Banach space. Let A
be a fixed nonempty closed bounded subset of IE. We put, for short,
/lx = /lAX' X E .'1I(IE).

For each kEN, set ek = 11k, and define

jtk = {XE~(IE)I inf diamMxA(a)<ek
<7>0

and inf diam MAX(rr) < ed.
<7>0

To prove the main result of this section, Theorem 4.3, we state two
lemmas whose proofs will be given later.
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LEMMA 4.1. jtk is dense in <&'(IE).

LEMMA 4.2. Jlk is open in <&'(fE).

15l

THEOREM 4.3. Let fE be a uniformly convex Banach space. Let A E J9(iE).
Then the set

"r = {X E <&'(IE) Imax(A, X) is Ire!! posed}

is a dense Go-subset of~(fE).

Proof By Lemmas 4.1 and 4.2, the set

j{o= n Jlk
ke f~

is a dense Go-subset of '6(fE). Moreover, by Proposition 2.2, we have
1/' = jt('. Hence "1/ is a dense Go-subset of <&'(fE), completing the proof.

Remark 4.4. Theorem 4.3 is a multivalued version of results due to
Asplund [1] and Edelstein [11]. Note also that with the notation of the
example given in Remark 3.6, there exists r> 0 such that, for every
XE BlffEI(XO, 1'), the maximization problem max(A, X) is not well posed.
This shows that, if fE is an arbitrary Banach space, then Theorem 4.3 is. i12
general, not true.

Proof of Lemma 4.1. Let X E <&'( IE) and let r > O. We want to show that
there exists YEJ{k such that hey, X)~r. The case Px=O is trivial. Thus,
without loss of generality, we suppose p x> 0 and take r such that
O<r</lx'

By Proposition 2.4, there exists 0 < (J 0 < l' such that for every x, Y E IE,
with 1!,r-x!1 =1', and for every O<O'~O'o, we have

diam D(x, y; Px+ II)' - xii -0', 0') < Gk'

where

D(x, Y; flx+ Ily - xii - 0',0') = BE(y, Px)\B[(x, ,ux+ Ily - xll-O')·

Set

(4.1 :-

(4.2)

By Proposition 2.3, there exists 0 < To < 1'/2 such that for every U E IE,
with d(u, X)? 1'/2, and for every 0 < T ~ To, we have

(4.3)
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where Cx.)t) is given by (2.3). Set

- . { if}t=mm to'l . (4.4 )

Now, pick xEXand iiEA such that Ilx-iill ~J-lx-i/4, and observe that
x =F ii, for J-l x> r > (J 0 ~ if > i. Set

x-ii
u=x+r---

Ilx-iill
Y=co(Xu {u}).

Clearly Y E 't'(IE), and h( Y, X) ~ r. Thus, to complete the proof it suffices to
show that Y E .Ilk'

To this end, we start by proving the following inequalities:

i
d(u,X)~r-4'

(4.5)

(4.6)

Indeed, Ilu-iill = Ilu-xll + Ilx-iill ~r+(J-lx-i/4), from which (4.5)
follows, for u E Yand ii EA. Furthermore, from (2.2) we have

d(u, X) ~ e(u, A) - J-lx~ (J-lx+ r-~) - J-lx= r-~,

for e(u, A) ~ J-l x + r - i/4, and so also (4.6) is proved.

Claim 1. We have

M YA G) c Cx.u(i). (4.7)

Indeed, suppose (4.7) false, and let Y E M YA(i/2)\Cx.u(i) be arbitrary.
From the definition of M YA(i/2) and from (4.5), we have

. i 3
e(y, A) ~ J-l Y-2~ J-lx+ r -4 r.

On the other hand, we have

(4.8)

e(y, A)~J-lx+d(y, Y)

< J-lx + (d(u, X) - i)

~J-lx+r-i

(by (2.2))

(as yE Y\Cx,u(i))

(as d(u, X) ~ r).

Since the latter inequality contradicts (4.8), Claim 1 is true.
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Claim 2. We have

M AY(~) C D(u, i; f1x + II.i - ull - a, (J).

153

(4.91

Indeed, let a E M AY(f/4) be arbitrary. As e(a, Y)?:.u Y - f/4, there exists
v E Y such that

f
Ily-all ?:f1y--.

2
(4.10)

By (2.2) we have d(y,X)?:e(y,A)-f1x, from which, by using (4.10) and
(4.5), we get

From this, since r?: d(u, X), we have dLv, X) > d(u, X) - f, and so
)'ECx.u(i). From (4.4) and (4.6) we have f~ro and d(u, X) > r/2. But, by
(4.3), diam Cx,u( f) < a/2, which implies

Now, we have

Ila-ull?: Ila- yll-Ily-ull
. -\-

>(f1Y-~)-~ (by (4.10) and (4.11))

(by (4.5)

(by (4.4)).

(4.11)

Hence a¢B[(u,j1x+ll.i-ull-a), for II.i-ull=r. Clearly, aEB[(.i,flx).
Hence aED(u, .i; f1x+ II.i- ull-a, a). As aEMAy(f/4) is arbitrary, (4.9) is
proved, completing the proof of Claim 2.

As diam Cx.,,(f) < a/2 and, by (4.2), a~f.k> Claim 1 gives

(4.12)
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Furthermore, from (4.1) we have diamD(u,.\';,ux+II.\'-ull-O',O')<cb
since II~\' - ull = r and, by (4.2), 0' ~ (Jo. Hence, by Claim 2,

From (4.12) and the latter inequality it follows that Y E .lIb which
completes the proof of Lemma 4.1.

Proof of Lemma 4.2. This is similar to the proof of Lemma 3.2, and so
it is omitted.
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