On Mutually Nearest and Mutually Furthest Points of Sets in Banach Spaces

F. S. De Blasi
Dipartimento di Matematica, Università di Roma II, Via Fontanile di Carcaricola, 00133 Roma, Italy
J. Myjak
Dipartimento di Matematica, Università dell' Aquila, Via Vetoio, 67100 L'Aquila, Italy
AND
P. L. Papini
Dipartimento di Matematica, Università di Bologna, Piazza Porta S. Donato 5, 40127 Bologna, Italy
Communicated by Frank Deutsch

Received October 24, 1990; revised July 26, 1991

Let A be a nonempty closed bounded subset of a uniformly convex Banach space \mathbb{E}. Let $\mathscr{C}(\mathbb{E})$ denote the space of all nonempty closed convex and bounded subsets of \mathbb{E}, endowed with the Hausdorff metric. We prove that the set of all $X \in \mathscr{C}(\mathbb{E})$ such that the maximization problem $\max (A, X)$ is well posed is a G_{δ} dense subset of $\mathscr{C}(\mathbb{E})$. A similar result is proved for the minimization problem $\min (A, X)$, with X in an appropriate subspace of $\mathscr{C}(\mathbb{E})$. C 1992 Academic Press, Inc.

1. Introduction and Preliminaries

Let \mathbb{E} be a real Banach space. We denote by $\mathscr{B}(\mathbb{E})$ the space of all nonempty closed bounded subsets of \mathbb{E}. For $X, Y \in \mathscr{B}(\mathbb{E})$, we set

$$
\begin{aligned}
& \lambda_{X Y}=\inf \{\|x-y\| \mid x \in X, y \in Y\}, \\
& \mu_{X Y}=\sup \{\|x-y\| \mid x \in X, y \in Y\} .
\end{aligned}
$$

AMS subject classification: primary 41A25; secondary 41A50, 41A28, 52A99.

Given $X, Y \in \mathscr{B}(\mathbb{E})$, we consider the minimization (resp. maximization) problem, denoted $\min (X, Y)$ (resp. $\max (X, Y)$), which consists in finding points $x_{0} \in X$ and $y_{0} \in Y$ such that $\left\|x_{0}-y_{0}\right\|=\lambda_{X Y}$ (resp. $\left\|x_{0}-y_{0}\right\|=\mu_{X Y}$. Any such pair $\left(x_{0}, y_{0}\right)$ is called a solution of the corresponding problem. Moreover, any sequence $\left\{\left(x_{n}, y_{n}\right)\right\}, x_{n} \in X, y_{n} \in Y$, such that $\lim _{n \rightarrow \infty}\left\|x_{n}-y_{n}\right\|=\lambda_{X Y}$ (resp. $\lim _{n \rightarrow \infty}\left\|x_{n}-y_{n}\right\|=\mu_{X Y}$) is called a minimizing (resp. maximizing) sequence. A minimization (resp. maximization) problem is said to be well posed if it has a unique solution (x_{0}, y_{0}), and every minimizing (resp. maximizing) sequence converges to (x_{0}, y_{0}).

Let M be a metric space with distance d. For any $u \in M$ and $r>0$ we set $B_{M}(u, r)=\{x \in M \mid d(x, u)<r\}$ and $\tilde{B}_{M}(u, r)=\{x \in M \mid d(x, u) \leqslant r\}$. If $X \subset \bar{M}$, by \bar{X} and $\operatorname{diam} X(X \neq \phi)$ we mean the closure of X and the diameter of X, respectively. As usual, if $X \subset \mathbb{E}, \overline{\text { co }} X$ stands for the closed convex hull of X. We put, for short, $B=B_{\mathbb{E}}(0,1)$ and $\widetilde{B}=\widetilde{B}_{\mathbb{E}}(0,1)$.

We set

$$
\mathscr{C}(\mathbb{E})=\{X \subset \mathbb{E} \mid X \text { is nonempty, convex, closed, bounded }\} .
$$

In the sequel, we suppose the space $\mathscr{C}(\mathbb{E})$ to be endowed with the Hausdorf distance h. As is well known, under such metric, $\mathscr{E}(\mathbb{E})$ is complete.

In this note we consider problems of minimization, $\min (A, X)$, and of maximization, $\max (A, X)$, where $A \in \mathscr{B}(\mathbb{E}), X \in \mathscr{C}(\mathbb{E})$, and \mathbb{E} is uniformly convex. More precisely, for a fixed $A \in \mathscr{B}(\mathbb{E})$, set $\mathscr{G}_{A}(\mathbb{E})=$ $\left\{X \in \mathscr{C}(\mathbb{E}) \mid \lambda_{A X}>0\right\}$. Then, it is proved (Theorem 3.3) that the set of all $X \in \mathscr{C}_{A}(\mathbb{E})$, such that the minimization problem $\min (A, X)$ is well posed, is a dense G_{δ}-subset of $\mathscr{C}_{A}(\mathbb{E})$. Furthermore, it is shown (Theorem 4.3) that the set of all $X \in \mathscr{C}(\mathbb{E})$, such that the maximization problem $\max (A, K)$ is weil posed, is a dense G_{δ}-subset of $\mathscr{C}(\mathbb{E})$.

The problems considered in this note are in the spirit of Stečkin [22]. Some further developments of Stečkin's ideas, also in other directions, caris be found in $[4-6,12,14-21]$ and in the monograph [10], by Dontchey and Zolezzi. Recently, a generic theorem on points of single valuedness of the proximity map for convex sets has been established by Beer and Pai [3], in a setting different from ours. Some other generic results in spaces of convex sets can be found in $[2,8]$.

2. Auxiliary Results

Let $X \in \mathscr{B}(\mathbb{E})$ and $z \in \mathbb{E}$ be arbitrary. We set

$$
\begin{aligned}
& d(z, X)=\inf \{\|z-x\| \mid x \in X\} \\
& e(z, X)=\sup \{\|z-x\| \mid x \in X\}
\end{aligned}
$$

For $X, Y \in \mathscr{B}(\mathbb{E})$ and $\sigma>0$, we set

$$
\begin{aligned}
L_{X, Y}(\sigma) & =\left\{x \in X \mid d(x, Y) \leqslant \lambda_{X Y}+\sigma\right\} \\
M_{X, Y}(\sigma) & =\left\{x \in X \mid e(x, Y) \geqslant \mu_{X Y}-\sigma\right\} .
\end{aligned}
$$

The sets $L_{X Y}(\sigma), M_{X Y}(\sigma)$ are nonempty, closed, and satisfy $L_{X Y}(\sigma) \subset$ $L_{X Y}\left(\sigma^{\prime}\right), M_{X Y}(\sigma) \subset M_{X Y}\left(\sigma^{\prime}\right)$, if $0<\sigma<\sigma^{\prime}$.

Proposition 2.1. Let $X, Y \in \mathscr{B}(\mathbb{E})$ and $z \in \mathbb{E}$ be arbitrary. Then we have

$$
\begin{align*}
& \lambda_{X Y} \leqslant d(z, X)+d(z, Y) \tag{2.1}\\
& \mu_{X Y} \geqslant e(z, Y)-d(z, X) \tag{2.2}
\end{align*}
$$

Proof. Both inequalities follow easily from the definitions.
Proposition 2.2. Let $X, Y \in \mathscr{B}(\mathbb{E})$ be arbitrary. Then the problem $\min (X, Y)(r e s p . \max (X, Y))$ is well posed if and only if

$$
\begin{array}{rll}
\inf _{\sigma>0} \operatorname{diam} L_{X Y}(\sigma)=0 & \text { and } & \inf _{\sigma>0} \operatorname{diam} L_{Y X}(\sigma)=0 \\
\text { (resp. } \inf _{\sigma>0} \operatorname{diam} M_{X Y}(\sigma)=0 & \text { and } & \left.\inf _{\sigma>0} \operatorname{diam} M_{Y X}(\sigma)=0\right) .
\end{array}
$$

Proof. This is an easy adaptation of an argument due to Furi and Vignoli [13].

The following proposition is a variant of a result due to Zabreiko and Krasnošel'skiǐ [23] and Daneš [7] (see also [8]).

Proposition 2.3. Let $X \in \mathscr{C}(\mathbb{E}), \varepsilon>0$, and $r>0$ be arbitrary. Then there exists $0<\tau_{0}<r$ such that for every $u \in \mathbb{E}$, with $d(u, X) \geqslant r$, and for every $0<\tau \leqslant \tau_{0}$, we have

$$
\operatorname{diam} C_{X, u}(\tau)<\varepsilon,
$$

where

$$
\begin{equation*}
C_{X, u}(\tau)=[\overline{\operatorname{co}}(X \cup\{u\})] \backslash[X+(d(u, X)-\tau) B] . \tag{2.3}
\end{equation*}
$$

Proposition 2.4. Let \mathbb{E} be a uniformly convex Banach space. Let $\varepsilon>0$ and let $r_{0}, r>0$, with $r<r_{0}$, be arbitrary. Then there exists $0<\sigma_{0}<r$ such that for every $x, y \in \mathbb{E}$, with $\|y-x\|=r$, and for every $r<r^{\prime} \leqslant r_{0}$ and $0<\sigma \leqslant \sigma_{0}$, we have

$$
\operatorname{diam} D\left(x, y ; r^{\prime}, \sigma\right)<\varepsilon
$$

where

$$
D\left(x, y ; r^{\prime}, \sigma\right)=\widetilde{B}_{\mathbb{E}}\left(y, r^{\prime}-\|y-x\|+\sigma\right) \backslash B_{\mathbb{E}}\left(x, r^{\prime}\right)
$$

Proof. Let $\varepsilon>0$ and $0<r<r_{0}$ be given. Let $x, y \in \mathbb{E}$ satisfy $\|y-x\|=r$. Let $r<r^{\prime} \leqslant r_{0}$ be arbitrary and let $y^{\prime}=(x+y) / 2$. We have $D\left(x, y ; r^{\prime}, \sigma\right) \subset$ $D\left(x, y^{\prime} ; r^{\prime}, \sigma\right), \sigma>0$. Moreover, by [9, Lemma 2.1], if $0<\sigma \leqslant 2\left\|y^{\prime}-x\right\|$; we have

$$
\begin{aligned}
\operatorname{diam} D\left(x, y^{\prime} ; r^{\prime}, \sigma\right) & \leqslant 2 \sigma+2\left(r^{\prime}-\left\|y^{\prime}-x\right\|\right) \delta^{*}\left(\frac{\sigma}{2\left\|y^{\prime}-x\right\|}\right) \\
& \leqslant 2 \sigma+\left(2 r_{0}-r\right) \delta^{*}\left(\frac{\sigma}{r}\right)
\end{aligned}
$$

where, for $\eta>0, \delta^{*}(\eta)=\sup \{\varepsilon \mid 0<\varepsilon \leqslant 2$ and $\delta(\varepsilon) \leqslant \eta\}$ and δ denotes the modulus of convexity of \mathbb{E}. Since the last term in the above inequality vanishes as $\sigma \rightarrow 0$, to complete the proof it suffices to choose $\sigma_{0}>0$ such that $2 \sigma_{0}+\left(2 r_{0}-r\right) \delta^{*}\left(\sigma_{0} / r\right)<\varepsilon$.

3. Minimization Problems

In this section \mathbb{E} denotes a uniformly convex Banach space. Let A be a fixed nonempty closed bounded subset of \mathbb{E}. We put, for short, $\lambda_{X}=\lambda_{A X}$, $X \in \mathscr{B}(\mathbb{E})$. Define

$$
\mathscr{C}_{A}(\mathbb{E})=\overline{\left\{X \in \mathscr{C}(\mathbb{E}) \mid \hat{\lambda}_{X}>0\right\}} .
$$

Under the Hausdorff distance, $\mathscr{C}_{A}(\mathbb{E})$ is a complete metric space.
For each $k \in \mathbb{N}$ set $\varepsilon_{k}=1 / k$, and define

$$
\mathscr{L}_{k}=\left\{X \in \mathscr{C}_{A}(\mathbb{E}) \mid \inf _{\sigma>0} \operatorname{diam} L_{X A}(\sigma)<\varepsilon_{k} \text { and } \inf _{\sigma>0} \operatorname{diam} L_{A X}(\sigma)<\varepsilon_{k}\right\} .
$$

To prove the main result of this section, Theorem 3.3, we state two lemmas, whose proofs will be given later.

Lemma 3.1. $\quad \mathscr{L}_{k}$ is dense in $\mathscr{C}_{A}(\mathbb{E})$.
Lemma 3.2. \mathscr{L}_{k} is open in $\mathscr{C}_{A}(\mathbb{E})$.
Theorem 3.3. Let \mathbb{E} be a uniformly convex Banach space. Let $A \in \mathscr{B}(\mathbb{E})$. Then the set

$$
\mathscr{F}=\left\{X \in \mathscr{C}_{A}(\mathbb{E}) \mid \min (A, X) \text { is well posed }\right\}
$$

is a dense $G_{\dot{\delta}}$-subset of $\mathscr{C}_{A}(\mathbb{E})$.

Proof. By Lemmas 3.1 and 3.2, the set

$$
\mathscr{L}_{0}=\bigcap_{k \in \mathbb{N}} \mathscr{L}_{k}
$$

is a dense G_{δ}-subset of $\mathscr{C}_{A}(\mathbb{E})$. Moreover, by Proposition 2.2, we have $\mathscr{F}=\mathscr{L}_{0}$. Hence \mathscr{V} is a dense G_{δ}-subset of $\mathscr{C}_{A}(\mathbb{E})$, completing the proof.

Remark 3.4. If $A=\widetilde{B}$ and $X_{0}=\frac{1}{2} \widetilde{B}$, then for each $X \in B_{\mathscr{C}_{(E)}}\left(X_{0}, \frac{1}{2}\right)$ the minimization problem $\min (A, X)$ is not well posed. This shows that Theorem 3.3 does not hold, in general, if the space $\mathscr{C}_{A}(\mathbb{E})$ is replaced by $\mathscr{C}(\mathbb{E})$.

Set $\mathscr{C}_{A}^{0}(\mathbb{E})=\left\{X \in \mathscr{C}(\mathbb{E}) \mid \lambda_{X}>0\right\}$ and observe that $\mathscr{C}_{A}^{0}(\mathbb{E})$ is a Baire space, being completely metrizable by Alexandroffs theorem. Then Theorem 3.3 remains valid with $\mathscr{C}_{A}^{0}(\mathbb{E})$, in the place of $\mathscr{C}_{A}(\mathbb{E})$.

Remark 3.5. For $A \in \mathscr{B}(\mathbb{E})$, set $\mathscr{\mathscr { D }}_{A}(\mathbb{E})=\{X \in \mathscr{C}(\mathbb{E}) \mid X \subset \overline{\mathbb{E} \backslash A}\}$. The space $\mathscr{D}_{A}(\mathbb{E})$ endowed with the Hausdorff metric is complete and, clearly, $\mathscr{C}_{A}(\mathbb{E}) \subset \mathscr{D}_{A}(\mathbb{E})$. Also in the space $\mathscr{D}_{A}(\mathbb{E})$ Theorem 3.3 is, in general, false. To see that, set $A=\overline{Q \backslash C}$, where $Q=\left\{(x, y) \in \mathbb{R}^{2} \mid 0 \leqslant x \leqslant 3 \pi,-1 \leqslant y \leqslant 1\right\}$ and $C=\left\{(x, y) \in \mathbb{R}^{2}|0 \leqslant x \leqslant 3 \pi, \quad-|\sin x| \leqslant y \leqslant|\sin x|\}\right.$, and let $X_{0}=$ $\left\{(x, 0) \in \mathbb{R}^{2} \mid \pi / 2 \leqslant x \leqslant 5 \pi / 2\right\}$. Clearly, $X_{0} \in \mathscr{D}_{A}\left(\mathbb{R}^{2}\right)$. Moreover, if $r>0$ is sufficiently small, for every $X \in B_{\mathscr{S A}_{4}\left(\mathbb{R}^{2}\right)}\left(X_{0}, r\right)$ the minimization problem $\min (A, X)$ is not well posed.

Remark 3.6. Theorem 3.3 remains valid if A is a nonempty closed subset of $\mathbb{E}, A \neq \mathbb{E}$. In this case, Theorem 3.3 is a multivalued version of a theorem due to Steckin [22]. If \mathbb{E} is an arbitrary Banach space, then Theorem 3.3 is, in general, not true. Take, for example, $\mathbb{E}=\mathbb{R}^{2}$ with the norm $\max \{|x|,|y|\},(x, y) \in \mathbb{R}^{2}$, and set $A=\widetilde{B}, X_{0}=\{(0,2)\}$. Then there exists $r>0$ such that, for every $X \in B_{\mathscr{C}_{A}(\mathbb{E})}\left(X_{0}, r\right)$, the minimization problem $\min (A, X)$ is not well posed.

Proof of Lemma 3.1. Let $X \in \mathscr{C}_{A}(\mathbb{E})$ and let $r>0$. We want to show that there exists $Y \in \mathscr{L}_{k}$ such that $h(Y, X) \leqslant r$. Without loss of generality we suppose $\lambda_{X}>0$ and $0<r<\lambda_{X}$.

By Proposition 2.4, there exists $0<\sigma_{0}<r$ such that for every $x, y \in \mathbb{E}$ with $\|x-y\|=r$, and for every $0<\sigma \leqslant \sigma_{0}$, we have

$$
\begin{equation*}
\operatorname{diam} D\left(x, y ; \lambda_{X}, \sigma\right)<\varepsilon_{k} \tag{3.1}
\end{equation*}
$$

where

$$
D\left(x, y ; \lambda_{X}, \sigma\right)=\widetilde{B}_{\mathbb{E}}\left(y, \lambda_{X}-\|y-x\|+\sigma\right) \backslash B_{\mathbb{E}}\left(x, \lambda_{X}\right) .
$$

Set

$$
\begin{equation*}
\tilde{\sigma}=\min \left\{\sigma_{0}, \varepsilon_{k}\right\} \tag{3.2}
\end{equation*}
$$

By Proposition 2.3, there exists $0<\tau_{0}<r / 2$ such that for every $u \in \mathbb{E}$ with $d(u, X) \geqslant r / 2$, and for every $0<\tau \leqslant \tau_{0}$, we have

$$
\begin{equation*}
\operatorname{diam} C_{X, u}(\tau)<\frac{\tilde{\sigma}}{2} \tag{3.3}
\end{equation*}
$$

where $C_{X, u}(\tau)$ is given by (2.3). Set

$$
\begin{equation*}
\tilde{\tau}=\min \left\{\tau_{0}, \frac{\tilde{\sigma}}{2}\right\} \tag{3.4}
\end{equation*}
$$

Now, pick $\tilde{x} \in X$ and $\tilde{a} \in A$ such that

$$
\begin{equation*}
\|\tilde{x}-\tilde{a}\| \leqslant \lambda_{x}+\frac{\tilde{\tau}}{2} \tag{3.5}
\end{equation*}
$$

Since $\|\tilde{x}-\tilde{a}\| \geqslant \lambda_{X}>r$, in the interval with end points \tilde{x} and \tilde{a} there is a point u, say, such that

$$
\begin{equation*}
\|\bar{x}-u\|=r \tag{3,6}
\end{equation*}
$$

Define $Y=\overline{\operatorname{co}}(X \cup\{u\})$. Since $Y \subset \overline{X+r \bar{B}}$ and $A \cap\left(X+\lambda_{X} B\right)=\phi$, we have $\lambda_{Y} \geqslant \lambda_{X}-r>0$, and so $Y \in \mathscr{C}_{A}(\mathbb{E})$. Clearly $h(Y, X) \leqslant r$. Thus, to complete the proof, it suffices to show that $Y \in \mathscr{L}_{k}$.

To this end, we start by proving the following inequalities:

$$
\begin{gather*}
\lambda_{Y} \leqslant \lambda_{X}+\frac{\tilde{\tau}}{2}-r \tag{3.7}\\
\frac{r}{2}<d(u, X) \leqslant r \tag{3.8}
\end{gather*}
$$

Indeed, by virtue of (3.5) and (3.6), we have

$$
\begin{equation*}
\|u-\tilde{a}\|=\|\tilde{x}-\tilde{a}\|-\|\tilde{x}-u\| \leqslant \lambda_{x}+\frac{\tilde{t}}{2}-r \tag{3.9}
\end{equation*}
$$

from which (3.7) follows, since $u \in Y$ and $\tilde{a} \in A$. Furthermore, by virtue of (2.1) and (3.9), we have

$$
d(u, X) \geqslant \lambda_{X}-d(u, A) \geqslant \lambda_{X}-\left(\lambda_{X}+\frac{\tilde{\tau}}{2}-r\right)=r-\frac{\tilde{\tau}}{2}
$$

and thus $d(u, X)>r / 2$, for $\tilde{\tau} \leqslant \tau_{0}<r / 2$. Since the right inequality in (3.8) is trivially satisfied, the proof of (3.8) is complete.

Claim 1. We have

$$
\begin{equation*}
L_{Y A}\left(\frac{\tilde{\tau}}{2}\right) \subset C_{X, u}(\tilde{\tau}) . \tag{3.10}
\end{equation*}
$$

Indeed, suppose (3.10) not true, and let $y \in L_{Y A}(\tilde{\tau} / 2) \backslash C_{X, u}(\tilde{\tau})$ be arbitrary. We have

$$
\begin{align*}
\lambda_{X} & \leqslant d(y, A)+d(y, X) & & (\text { by }(2.1)) \tag{2.1}\\
& \leqslant \lambda_{Y}+\frac{\tilde{\tau}}{2}+d(y, X) & & \left(\text { as } y \in L_{Y A}(\tilde{\tau} / 2)\right) \tag{YA}\\
& <\lambda_{Y}+\frac{\tilde{\tau}}{2}+d(u, X)-\tilde{\tau} & & \left(\text { as } y \notin C_{X, u}(\tilde{\tau})\right) \\
& <\left(\lambda_{X}+\frac{\tilde{\tau}}{2}-r\right)+\frac{\tilde{\tau}}{2}+r-\tilde{\tau} & & (\text { by }(3.7) \text { and (3.8)) } \\
& =\lambda_{X} . & &
\end{align*}
$$

From the contradiction, (3.10) follows and Claim 1 is proved.
Claim 2. We have

$$
\begin{equation*}
L_{A Y}\left(\frac{\tilde{\tau}}{4}\right) \subset D\left(\tilde{x}, u ; \lambda_{X}, \tilde{\sigma}\right) \tag{3.11}
\end{equation*}
$$

Indeed, let $a \in L_{A Y}(\tilde{\tau} / 4)$ be arbitrary. Evidently, $a \in A$ and $d(a, Y) \leqslant$ $\lambda_{Y}+\tilde{\tau} / 4$. Now, pick $y \in Y$ such that $\|a-y\| \leqslant \lambda_{Y}+\tilde{\tau} / 2$. This and (3.7) imply

$$
\begin{equation*}
\|a-y\| \leqslant \lambda_{X}-r+\tau \tag{3.12}
\end{equation*}
$$

and thus

$$
\begin{equation*}
d(y, A) \leqslant \lambda_{x}-r+\tilde{\tau} . \tag{3.13}
\end{equation*}
$$

By virtue of (2.1), (3.13), and (3.8), we have

$$
d(y, X) \geqslant \lambda_{X}-d(y, A) \geqslant \lambda_{X}-\left(\lambda_{X}-r+\tilde{\tau}\right) \geqslant d(u, X)-\tilde{\tau},
$$

which shows that $y \in C_{X, u}(\tilde{\tau})$. From (3.8) and (3.4), $d(u, X)>r / 2$ and $\tilde{\tau} \leqslant \tau_{0}$. Thus (3.3) gives diam $C_{X, u}(\tilde{\tau})<\tilde{\sigma} / 2$, and so

$$
\begin{equation*}
\|y-u\|<\frac{\tilde{\sigma}}{2} \tag{3.14}
\end{equation*}
$$

Now we have

$$
\begin{aligned}
\|a-u\| & \leqslant\|a-y\|+\|y-u\| \\
& <\left(\lambda_{x}-r+\tilde{\tau}\right)+\frac{\tilde{\sigma}}{2} \quad(\text { by }(3.12),(3.14)) \\
& \leqslant \lambda_{x}-\|\tilde{x}-u\|+\tilde{\sigma} \quad(\text { by }(3.6),(3.4)),
\end{aligned}
$$

which shows that $a \in \widetilde{B}_{\mathbb{E}}\left(u, \lambda_{X}-\|\tilde{x}-u\|+\tilde{\sigma}\right)$. Clearly $\|a-\tilde{x}\| \geqslant \lambda_{X}$, that is, $a \notin B_{\mathbb{E}}\left(\tilde{x}, \lambda_{X}\right)$. Hence $a \in D\left(\tilde{x}, u ; \lambda_{X}, \tilde{\sigma}\right)$. As $a \in L_{A Y}(\tilde{\tau} / 4)$ is arbitrary, (3.11) is proved, completing the proof of Claim 2.

As diam $C_{X, u}(\tilde{\tau})<\tilde{\sigma} / 2$ and, by (3.2), $\tilde{\sigma} \leqslant \varepsilon_{k}$, from Claim 1 we have

$$
\begin{equation*}
\operatorname{diam} L_{Y A}\left(\frac{\tilde{\tau}}{2}\right)<\varepsilon_{k} \tag{3.15}
\end{equation*}
$$

Furthermore, from (3.6) and (3.2), $\|\tilde{x}-u\|=r$ and $\tilde{\sigma} \leqslant \sigma_{0}$. Thus (3.1) gives $\operatorname{diam} D\left(\tilde{x}, u ; \lambda_{x}, \tilde{\sigma}\right)<\varepsilon_{k}$. Hence, by Claim 2, we have

$$
\begin{equation*}
\operatorname{diam} L_{A Y}\left(\frac{\tilde{\tau}}{4}\right)<\varepsilon_{k} \tag{3.16}
\end{equation*}
$$

From (3.15) and (3.16), it follows that $Y \in \mathscr{L}_{k}$, which completes the proof of Lemma 3.1.

Proof of Lemma 3.2. Indeed, let $X \in \mathscr{L}_{k}$ be arbitrary. Let $\eta>0$ be such that

$$
\begin{equation*}
\theta+2 \eta<\varepsilon_{k}, \quad \text { where } \quad \theta=\min \left\{\inf _{\sigma>0} \operatorname{diam} L_{X A}(\sigma), \inf _{\sigma>0} \operatorname{diam} L_{A X}(\sigma)\right\} \tag{3.17}
\end{equation*}
$$

Furthermore, let $\sigma_{1}>0$ be such that

$$
\begin{equation*}
\operatorname{diam} L_{X A}\left(\sigma_{1}\right)<\theta+\eta, \quad \operatorname{diam} L_{A X}\left(\sigma_{1}\right)<\theta+\eta \tag{3.18}
\end{equation*}
$$

Fix $\sigma_{2}, 0<\sigma_{2}<\sigma_{1}$, and set

$$
\begin{equation*}
\delta=\min \left\{\frac{\sigma_{1}-\sigma_{2}}{2}, \frac{\eta}{2}\right\} \tag{3.19}
\end{equation*}
$$

We claim that $B_{\mathscr{C}_{A}(\mathbb{E})}(X, \delta) \subset \mathscr{L}_{k}$. To prove that, let $Y \in B_{\mathscr{C}_{A}(\mathbb{E})}(X, \delta)$ be
arbitrary. Let $y \in L_{Y A}\left(\sigma_{2}\right)$ be arbitrary. As $h(Y, X)<\delta$, there exists an $x \in X$ such that $\|y-x\|<\delta$. We have

$$
\begin{aligned}
d(x, A) & <d(y, A)+\delta & & \\
& \leqslant \lambda_{Y}+\sigma_{2}+\delta & & \left(\text { as } y \in L_{Y A}\left(\sigma_{2}\right)\right) \\
& <\left(\lambda_{X}+\delta\right)+\sigma_{2}+\delta & & (\text { as } h(Y, X)<\delta) \\
& \leqslant \lambda_{X}+\sigma_{1} & & (\text { by }(3.19)),
\end{aligned}
$$

and so $x \in L_{X A}\left(\sigma_{1}\right)$. Hence $y=x+(y-x) \in L_{X A}\left(\sigma_{1}\right)+\delta B$, from which, since y is arbitrary in $L_{Y A}\left(\sigma_{2}\right)$, we have $L_{Y A}\left(\sigma_{2}\right) \subset L_{X A}\left(\sigma_{1}\right)+\delta B$. From this, by virtue of (3.18), (3.19), and (3.17), we have

$$
\begin{equation*}
\operatorname{diam} L_{Y A}\left(\sigma_{2}\right) \leqslant \operatorname{diam} L_{X A}\left(\sigma_{1}\right)+2 \delta<\theta+2 \eta<\varepsilon_{k} \tag{3.20}
\end{equation*}
$$

Now, let $a \in L_{A Y}\left(\sigma_{2}\right)$ be arbitrary. We have $d(a, X) \leqslant d(a, Y)+h(Y, X)$. From this, it follows that

$$
\begin{aligned}
d(a, X) & <d(a, Y)+\delta & & (\text { as } h(Y, X)<\delta) \\
& \leqslant\left(\lambda_{Y}+\sigma_{2}\right)+\delta & & \left(\text { as } a \in L_{A Y}\left(\sigma_{2}\right)\right) \\
& <\left(\lambda_{X}+\delta\right)+\sigma_{2}+\delta & & (\text { as } h(Y, X)<\delta) \\
& \leqslant \lambda_{X}+\sigma_{1} & & (\text { by }(3.19)),
\end{aligned}
$$

which shows that $a \in L_{A X}\left(\sigma_{1}\right)$. As $a \in L_{A Y}\left(\sigma_{2}\right)$ is arbitrary, we have $L_{A Y}\left(\sigma_{2}\right) \subset L_{A X}\left(\sigma_{1}\right)$. From this, by virtue of (3.18) and (3.17), we have

$$
\begin{equation*}
\operatorname{diam} L_{A Y}\left(\sigma_{2}\right) \leqslant \operatorname{diam} L_{A X}\left(\sigma_{1}\right)<\theta+\eta<\varepsilon_{k} \tag{3.21}
\end{equation*}
$$

From (3.20) and (3.21) it follows that $Y \in \mathscr{L}_{k}$. As $Y \in B_{\mathscr{C}_{A}(\mathbb{E})}(X, \delta)$ is arbitrary, the proof of Lemma 3.2 is complete.

4. Maximization Problems

Also in this section \mathbb{E} denotes a uniformly convex Banach space. Let A be a fixed nonempty closed bounded subset of \mathbb{E}. We put, for short, $\mu_{X}=\mu_{A X}, X \in \mathscr{B}(\mathbb{E})$.

For each $k \in \mathbb{N}$, set $\varepsilon_{k}=1 / k$, and define
$\boldsymbol{M}_{k}=\left\{X \in \mathscr{C}(\mathbb{E}) \mid \inf _{\sigma>0} \operatorname{diam} M_{X A}(\sigma)<\varepsilon_{k} \quad\right.$ and $\left.\quad \inf _{\sigma>0} \operatorname{diam} M_{A X}(\sigma)<\varepsilon_{k}\right\}$.
To prove the main result of this section, Theorem 4.3, we state two lemmas whose proofs will be given later.

Lemma 4.1. H_{k} is dense in $\mathscr{C}(\mathbb{E})$.
Lemma 4.2. . A_{k} is open in $\mathscr{C}(\mathbb{E})$.
Theorem 4.3. Let \mathbb{E} be a uniformly convex Banach space. Let $A \in \mathscr{B}(\mathbb{E})$. Then the set

$$
\mathscr{V}^{\wedge}=\{X \in \mathscr{C}(\mathbb{E}) \mid \max (A, X) \text { is well posed }\}
$$

is a dense G_{δ}-subset of $\mathscr{C}(\mathbb{E})$.
Proof. By Lemmas 4.1 and 4.2, the set

$$
\mathscr{A}_{0}=\bigcap_{k \in \mathbb{N}} \mathscr{A}_{k}
$$

is a dense G_{δ}-subset of $\mathscr{C}(\mathbb{E})$. Moreover, by Proposition 2.2, we have $\mathscr{Y}^{\prime}=\mathscr{A}_{\mathrm{C}}$. Hence $\mathscr{\mathscr { V }}$ is a dense $G_{\dot{d}}$-subset of $\mathscr{C}(\mathbb{E})$, completing the proof.

Remark 4.4. Theorem 4.3 is a multivalued version of results due to Asplund [1] and Edelstein [11]. Note also that with the notation of the example given in Remark 3.6, there exists $r>0$ such that, for every $X \in B_{\mathscr{G}(E)}\left(X_{0}, r\right)$, the maximization problem $\max (A, X)$ is not well posed. This shows that, if \mathbb{E} is an arbitrary Banach space, then Theorem 4.3 is. in general, not irue.

Proof of Lemma 4.1. Let $X \in \mathscr{C}(\mathbb{E})$ and let $r>0$. We want to show that there exists $Y \in \mathscr{A}_{k}$ such that $h(Y, X) \leqslant r$. The case $\mu_{X}=0$ is trivial. Thus, without loss of generality, we suppose $\mu_{X}>0$ and take r such tha: $0<r<\mu_{X}$.

By Proposition 2.4, there exists $0<\sigma_{0}<r$ such that for every $x, y \in \mathbb{E}$, with $\|y-x\|=r$, and for every $0<\sigma \leqslant \sigma_{0}$, we have

$$
\begin{equation*}
\operatorname{diam} D\left(x, y ; \mu_{X}+\|y-x\|-\sigma, \sigma\right)<\varepsilon_{k}, \tag{4.1}
\end{equation*}
$$

where

$$
D\left(x, y ; \mu_{X}+\|y-x\|-\sigma, \sigma\right)=\widetilde{B}_{\mathbb{E}}\left(y, \mu_{X}\right) \backslash B_{\mathbb{E}}\left(x, \mu_{X}+\|y-x\|-\sigma\right)
$$

Set

$$
\begin{equation*}
\tilde{\sigma}=\min \left\{\sigma_{0}, \varepsilon_{k}\right\} \tag{4.2}
\end{equation*}
$$

By Proposition 2.3, there exists $0<\tau_{0}<r / 2$ such that for every $u \in \mathbb{E}$, with $d(u, X) \geqslant r / 2$, and for every $0<\tau \leqslant \tau_{0}$, we have

$$
\begin{equation*}
\operatorname{diam} C_{X, u}(\tau)<\frac{\tilde{\sigma}}{2}, \tag{4.3}
\end{equation*}
$$

where $C_{X, u}(\tau)$ is given by (2.3). Set

$$
\begin{equation*}
\tilde{\tau}=\min \left\{\tau_{0}, \frac{\tilde{\sigma}}{2}\right\} \tag{4.4}
\end{equation*}
$$

Now, pick $\tilde{x} \in X$ and $\tilde{a} \in A$ such that $\|\tilde{x}-\tilde{a}\| \geqslant \mu_{X}-\tilde{\tau} / 4$, and observe that $\tilde{x} \neq \tilde{a}$, for $\mu_{X}>r>\sigma_{0} \geqslant \tilde{\sigma}>\tilde{\tau}$. Set

$$
u=\tilde{x}+r \frac{\tilde{x}-\tilde{a}}{\|\tilde{x}-\tilde{a}\|}, \quad Y=\overline{\operatorname{co}}(X \cup\{u\})
$$

Clearly $Y \in \mathscr{C}(\mathbb{E})$, and $h(Y, X) \leqslant r$. Thus, to complete the proof it suffices to show that $Y \in \mathscr{M}_{k}$.

To this end, we start by proving the following inequalities:

$$
\begin{gather*}
\mu_{Y} \geqslant \mu_{X}+r-\frac{\tilde{\tau}}{4}, \tag{4.5}\\
d(u, X) \geqslant r-\frac{\tilde{\tau}}{4} \tag{4.6}
\end{gather*}
$$

Indeed, $\quad\|u-\tilde{a}\|=\|u-\tilde{x}\|+\|\tilde{x}-\tilde{a}\| \geqslant r+\left(\mu_{X}-\tilde{\tau} / 4\right)$, from which
follows, for $u \in Y$ and $\tilde{a} \in A$. Furthermore, from (2.2) we have

$$
d(u, X) \geqslant e(u, A)-\mu_{X} \geqslant\left(\mu_{X}+r-\frac{\tilde{\tau}}{4}\right)-\mu_{X}=r-\frac{\tilde{\tau}}{4},
$$

for $e(u, A) \geqslant \mu_{X}+r-\tilde{\tau} / 4$, and so also (4.6) is proved.
Claim 1. We have

$$
\begin{equation*}
M_{Y A}\left(\frac{\tilde{\tau}}{2}\right) \subset C_{X, u}(\tilde{\tau}) \tag{4.7}
\end{equation*}
$$

Indeed, suppose (4.7) false, and let $y \in M_{Y A}(\tilde{\tau} / 2) \backslash C_{X, u}(\tilde{\tau})$ be arbitrary. From the definition of $M_{Y A}(\tilde{\tau} / 2)$ and from (4.5), we have

$$
\begin{equation*}
e(y, A) \geqslant \mu_{Y}-\frac{\tilde{\tau}}{2} \geqslant \mu_{X}+r-\frac{3}{4} \tilde{\tau} \tag{4.8}
\end{equation*}
$$

On the other hand, we have

$$
\begin{aligned}
e(y, A) & \leqslant \mu_{X}+d(y, Y) & & (\text { by }(2.2)) \\
& <\mu_{X}+(d(u, X)-\tilde{\tau}) & & \left(\text { as } y \in Y \backslash C_{X, u}(\tilde{\tau})\right) \\
& \leqslant \mu_{X}+r-\tilde{\tau} & & (\text { as } d(u, X) \leqslant r)
\end{aligned}
$$

Since the latter inequality contradicts (4.8), Claim 1 is true.

Claim 2. We have

$$
\begin{equation*}
M_{A Y}\left(\frac{\tilde{\tau}}{4}\right) \subset D\left(u, \tilde{x} ; \mu_{X}+\|\tilde{x}-u\|-\tilde{\sigma}, \tilde{\sigma}\right) \tag{4.9}
\end{equation*}
$$

Indeed, let $a \in M_{A Y}(\tilde{\tau} / 4)$ be arbitrary. As $e(a, Y) \geqslant \mu_{Y}-\tilde{\tau} / 4$, there exists $v \in Y$ such that

$$
\|y-a\| \geqslant \mu_{Y}-\frac{\tilde{\tau}}{2}
$$

By (2.2) we have $d(y, X) \geqslant e(y, A)-\mu_{X}$, from which, by using (4.10) and (4.5), we get

$$
d(y, X) \geqslant\left(\mu_{Y}-\frac{\tilde{\tau}}{2}\right)-\mu_{X} \geqslant\left(\mu_{X}+r-\frac{\tilde{\tau}}{4}\right)-\frac{\tilde{\tau}}{2}-\mu_{X}>r-\tilde{\tau} .
$$

From this, since $r \geqslant d(u, X)$, we have $d(y, X)>d(u, X)-\tilde{\tau}$, and so $y \in C_{X, u}(\tilde{\tau})$. From (4.4) and (4.6) we have $\tilde{\tau} \leqslant \tau_{0}$ and $d(u, X)>r / 2$. But, by (4.3), $\operatorname{diam} C_{X, u}(\tilde{\tau})<\tilde{\sigma} / 2$, which implies

$$
\begin{equation*}
\|y-u\|<\frac{\check{\sigma}}{2} \tag{4.11}
\end{equation*}
$$

Now, we have

$$
\begin{array}{rlrl}
\|a-u\| & \geqslant\|a-y\|-\|y-u\| & \\
& >\left(\mu_{Y}-\frac{\tilde{\tau}}{2}\right)-\frac{\tilde{\sigma}}{2} & & (\text { by }(4.10) \text { and }(4.11)) \\
& \geqslant\left(\mu_{X}+r-\frac{\tilde{\tau}}{4}\right)-\frac{\tilde{\tau}}{2}-\frac{\tilde{\sigma}}{2} & & (\text { by }(4.5)) \\
& >\mu_{X}+r-\tilde{\sigma} & & (\text { by }(4.4)) .
\end{array}
$$

Hence $a \notin B_{\mathbb{E}}\left(u, \mu_{X}+\|\tilde{x}-u\|-\tilde{\sigma}\right)$, for $\|\tilde{x}-u\|=r$. Clearly, $a \in \tilde{B}_{\mathbb{E}}\left(\tilde{x}, \mu_{X}\right)$. Hence $a \in D\left(u, \tilde{x} ; \mu_{X}+\|\tilde{x}-u\|-\tilde{\sigma}, \tilde{\sigma}\right)$. As $a \in M_{A Y}(\tilde{\tau} / 4)$ is arbitrary, (4.9) is proved, completing the proof of Claim 2.

As $\operatorname{diam} C_{X . u}(\tilde{\tau})<\tilde{\sigma} / 2$ and, by (4.2), $\tilde{\sigma} \leqslant \varepsilon_{k}$, Claim 1 gives

$$
\begin{equation*}
\operatorname{diam} M_{Y A}\left(\frac{\tilde{\tau}}{2}\right)<\varepsilon_{k} \tag{4.12}
\end{equation*}
$$

Furthermore, from (4.1) we have $\operatorname{diam} D\left(u, \tilde{x} ; \mu_{X}+\|\tilde{x}-u\|-\tilde{\sigma}, \tilde{\sigma}\right)<\varepsilon_{k}$, since $\|\tilde{x}-u\|=r$ and, by (4.2), $\tilde{\sigma} \leqslant \sigma_{0}$. Hence, by Claim 2 ,

$$
\operatorname{diam} M_{A Y}\left(\frac{\tilde{\tau}}{4}\right)<\varepsilon_{k}
$$

From (4.12) and the latter inequality it follows that $Y \in \mathcal{A}_{k}$, which completes the proof of Lemma 4.1.

Proof of Lemma 4.2. This is similar to the proof of Lemma 3.2, and so it is omitted.

References

1. E. Asplund, Farthest points in reflexive locally uniformly rotund Banach spaces, Israel J. Math. 4 (1966), 213-216.
2. G. Beer, Support and distance functionals for convex sets, Numer. Funct. Anal. Optim. 10 (1989), 15-36.
3. G. Beer and D. Pai, The prox map, J. Math. Anal. Appl. 156 (1991), 428-443.
4. G. Beer and R. Lucchetti, Convex optimization and the epi-distance topology, Trans. Amer. Math. Soc., to appear.
5. J. M. Borwein and S. Fitzpatrick, Existence of nearest points in Banach spaces, Canad. J. Math. 41 (1989), 702-720.
6. M. M. Čoban, P. S. Kenderov, and J. P. Revalski, Generic well-posedness of optimization problems in topological spaces, C.R. Acad. Bulgare Sci. 42, No. 1 (1989), 11-14.
7. J. DANEŠ, Equivalence of some geometric and related results of nonlinear functional analysis, Comment. Math. Univ. Carolin. 26, No. 3 (1985), 443-454.
8. F. S. De blasi, J. Myjak, and P. L. Papini, Starshaped sets and best approximation, Arch. Math. 56 (1991), 41-48.
9. F. S. De Blasi, J. Myjak, and P. L. Papint, Porous sets in best approximation theory, J. London Math. Soc. (2) 44 (1991), 135-142.
10. A. Dontchev and T. Zolezzi, "Well Posed Optimization Problems," to appear.
11. M. Edelstein, Farthest points of sets in uniformly convex Banach spaces, Israel J. Math. 4 (1966), 171-176.
12. M. Edel.Stein, Weakly proximinal sets, J. Approx. Theory 18 (1976), 1-8.
13. M. Furi and A. Vignoli, About well-posed optimization problems for functionals in metric spaces, J. Optim. Theory Appl. 5 (1970), 225-229.
14. A. Garkavi, On Chebyshev and almost Chebyshev subspaces, Izv. Akad. Nauk SSSR Ser. Mat. 28 (1964), 779-818. [Russian]
15. P. G. Georgiev, The strong Ekeland variational principle, the strong drop theorem and applications, J. Math. Anal. Appl. 131 (1988), 1-21.
16. P. S. Kenderov, Most of the optimization problems have unique solution, C.R. Acad. Bulgare Sci. 37, No. 3 (1984), 297-300.
17. S. V. Konjagin, Sets of points of nonemptiness and continuity of the metric projection, Mat. Zametki 33 (1983), 641-655. [Russian]
18. Ka-Sing Lau, Farthest points in weakly compact sets, Israel J. Math. 22 (1975), 168-174.
19. Ka-Sing Lau, Almost Chebyshev subsets in reflexive Banach spaces, Indiana Univ. Math. J. 27 (1978), 791-795.
20. R. Lucchetti and F. Patrone, Sulla densità e genericità di alcuni problemi di minimo ben posti, Boll. Un. Mat. Ital. (5) 15B (1978), 225-240.
21. J P. Revalski, An equivalence relation between optimization problems connected with the well-posedness, C.R. Acad. Bulgare Sci. 41, No. 12 (1988), 11-14.
22. S. B. Steट̌kin, Approximation properties of sets in normed linear spaces, Rev. Roumaine Math. Pures Appl. 8 (1963), 5-18. [Russian]
23 P. P. Zabreíko and M. A. Krasnošel'skií, On the solvability of nonlinear operator equations, Funktsional. Anal. i Prilozhen. 5, No. 3 (1971). 42-44
